Wright, L. & Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 7, 13 (2020).
Google Scholar
Grieves, M. & Vickers, J. in Transdisciplinary Perspectives on Complex Systems (eds Kahlen, J. et al.) 85–113 (Springer, 2017).
Boschert, S. & Rosen, R. in Mechatronic Futures (eds Hehenberger, P. & Bradley, D.) 59–74 (Springer, 2016).
Tao, F. & Qi, Q. Make more digital twins. Nature 573, 490–491 (2019).
Google Scholar
Niederer, S. A., Sacks, M. S., Girolami, M. & Willcox, K. Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1, 313–320 (2021).
Google Scholar
Bauer, P. et al. The digital revolution of Earth-system science. Nat. Comput. Sci. 1, 104–113 (2021).
Google Scholar
Rosen, R., Von Wichert, G., Lo, G. & Bettenhausen, K. D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC PapersOnLine 48, 567–572 (2015).
Google Scholar
Tao, F., Zhang, H., Liu, A. & Nee, A. Y. Digital twin in industry: state-of-the-art. IEEE Trans. Industr. Inform. 15, 2405–2415 (2018).
Google Scholar
Cannoodt, R., Saelens, W., Deconinck, L. & Saeys, Y. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells. Nat. Commun. 12, 3942 (2021).
Google Scholar
Bruynseels, K., Santoni de Sio, F. & van den Hoven, J. Digital twins in health care: ethical implications of an emerging engineering paradigm. Front. Genet. 9, 31 (2018).
Google Scholar
Laubenbacher, R., Sluka, J. P. & Glazier, J. A. Using digital twins in viral infection. Science 371, 1105–1106 (2021).
Google Scholar
Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).
Google Scholar
Voosen, P. Europe is building a ‘digital twin’ of Earth to revolutionize climate forecasts. Science https://doi.org/10.1126/science.abf0687 (2020).
Deren, L., Wenbo, Y. & Zhenfeng, S. Smart city based on digital twins. Comput. Urban Sci. 1, 4 (2021).
Google Scholar
Francisco, A., Mohammadi, N. & Taylor, J. E. Smart city digital twin-enabled energy management: toward real-time urban building energy benchmarking. J. Manag. Eng. 36, 04019045 (2020).
Google Scholar
Jiang, Y., Yin, S., Li, K., Luo, H. & Kaynak, O. Industrial applications of digital twins. Phil. Trans. R. Soc. Lond. A 379, 20200360 (2021).
Marmolejo-Saucedo, J. A., Hurtado-Hernandez, M. & Suarez-Valdes, R. Digital twins in supply chain management: a brief literature review. In Proc. ICO 2019: Intelligent Computing and Optimization Vol. 1072 (eds Vasant, P. et al.) 653–661 (Springer, 2020).
El-Zahab, S. & Zayed, T. Leak detection in water distribution networks: an introductory overview. Smart Water 4, 5 (2019).
Google Scholar
Clemen, T. et al. Multi-agent systems and digital twins for smarter cities. In Proc. 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation 45–55 (ACM, 2021).
Havard, V., Jeanne, B., Lacomblez, M. & Baudry, D. Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations. Prod. Manuf. Res. 7, 472–489 (2019).
Onile, A. E., Machlev, R., Petlenkov, E., Levron, Y. & Belikov, J. Uses of the digital twins concept for energy services, intelligent recommendation systems, and demand side management: A review. Energy Rep. 7, 997–1015 (2021).
Google Scholar
Dembski, F., Wössner, U., Letzgus, M., Ruddat, M. & Yamu, C. Urban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability 12, 2307 (2020).
Google Scholar
Lian, B. et al. Application of digital twins for remote operation of membrane capacitive deionization (mCDI) systems. Desalination 525, 115482 (2022).
Google Scholar
Designing Disruption: the critical role of Virtual Twins in accelerating Sustainability (Dassault Systèmes and Accenture, 2021).
Deng, S. et al. Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J. 7, 7457–7469 (2020).
Google Scholar
Engström, R. E. et al. Succeeding at home and abroad: accounting for the international spillovers of cities’ SDG actions. npj Urban Sustain. 1, 18 (2021).
Google Scholar
Amirebrahimi, S., Rajabifard, A., Mendis, P. & Ngo, T. A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. J. Spat. Sci. 61, 317–350 (2016).
Google Scholar
Rajabifard, A. et al. in Sustainable Development Goals Connectivity Dilemma (ed. Rajabifard, A.) 243–255 (CRC, 2019).
Sabri, S. & Rajabifard, A. in Sustainable Development Goals Connectivity Dilemma (ed. Rajabifard, A.) 199–211 (CRC, 2019).
Assarkhaniki, Z., Sabri, S. & Rajabifard, A. Using open data to detect the structure and pattern of informal settlements: an outset to support inclusive SDGs’ achievement. Big Earth Data 5, 497–526 (2021).
Google Scholar
Vinuesa, R. et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 11, 233 (2020).
Google Scholar
Karvonen, A. et al. The ‘New Urban Science’: towards the interdisciplinary and transdisciplinary pursuit of sustainable transformations. Urban Transform. 3, 9 (2021).
Google Scholar
Bettencourt, L. M. A. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).
Acuto, M. & Parnell, S. Leave no city behind. Science 352, 873 (2016).
Google Scholar
Kapteyn, M. G., Pretorius, J. V. & Willcox, K. E. A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat. Comput. Sci. 1, 337–347 (2021).
Google Scholar
Ragnedda, M. & Gladkova, A. (eds) Digital Inequalities in the Global South (Springer, 2020).
Pick, J. B. & Azari, R. Global digital divide: influence of socioeconomic, governmental, and accessibility factors on information technology. Inf. Technol. Dev. 14, 91–115 (2008).
Google Scholar
Chinn, M. D. & Fairlie, R. W. The determinants of the global digital divide: a cross-country analysis of computer and internet penetration. Oxf. Econ. Pap. 59, 16–44 (2007).
Google Scholar
Rodriguez, F. & Wilson, E. J. Are Poor Countries Losing the Information Revolution? (World Bank, 2000).
Niu, J., Tang, W., Xu, F., Zhou, X. & Song, Y. Global research on artificial intelligence from 1990–2014: spatially-explicit bibliometric analysis. ISPRS Int. J. Geoinf. 5, 66 (2016).
Google Scholar
Schrotter, G. & Hürzeler, C. The digital twin of the city of Zurich for urban planning. J. Photogramm. Remote. Sens. Geoinf. Sci. 88, 99–112 (2020).
United Nations Statistics Division in The Sustainable Development Goals Report 2019 (United Nations, 2019); https://unstats.un.org/sdgs/report/2019/goal-11/
Derudder, B. & Van Meeteren, M. Engaging with ‘urban science’. Urban Geogr. 40, 555–564 (2019).
Google Scholar
Bai, X. et al. Networking urban science, policy and practice for sustainability. Curr. Opin. Environ. Sustain. 39, 114–122 (2019).
Google Scholar
Hillier, B. in Digital Urban Modeling and Simulation Vol. 242 (eds Arisona, S. M. et al.) 24–48 (Springer, 2012).
Smajgl, A., Brown, D. G., Valbuena, D. & Huigen, M. G. Empirical characterisation of agent behaviours in socio-ecological systems. Environ. Model. Softw. 26, 837–844 (2011).
Google Scholar
Karlsson, J. M., Bring, A., Peterson, G. D., Gordon, L. J. & Destouni, G. Opportunities and limitations to detect climate-related regime shifts in inland Arctic ecosystems through eco-hydrological monitoring. Environ. Res. Lett. 6, 014015 (2011).
Google Scholar
Laikre, L. et al. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).
Google Scholar
Edmonds, B. & Meyer, R. (eds) Simulating Social Complexity: A Handbook (Springer, 2013).
Slater, T. Shaking Up the City: Ignorance, Inequality, and the Urban Question (Univ. California Press, 2021).
Brusaporci, S. in 3D Printing: Breakthroughs in Research and Practice (ed. Information Resources Management Association) 333–360 (IGI Global, 2017).
Zou, J. & Schiebinger, L. AI can be sexist and racist—it’s time to make it fair. Nature 559, 324–326 (2018).
Google Scholar
Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).
Google Scholar
Zhao, Z. et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. 751, 141749 (2021).
Google Scholar
Tzachor, A., Devare, M., King, B., Avin, S. & Ó hÉigeartaigh, S. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nat. Mach. Intell. 4, 104–109 (2022).
Google Scholar
Chen, Y. & Landry, D. Capturing the rains: comparing Chinese and World Bank hydropower projects in Cameroon and pathways for south–south and north nouth technology transfer. Energy Policy 115, 561–571 (2018).
Google Scholar
Stilgoe, J., Owen, R., & Macnaghten, P. in The Ethics of Nanotechnology, Geoengineering and Clean Energy (eds Maynard, A. & Stilgoe, J.) 347–359 (Routledge, 2020).
Stahl, B. C. & Wright, D. Ethics and privacy in AI and big data: implementing responsible research and innovation. IEEE Secur. Priv. 16, 26–33 (2018).
Google Scholar
Jirotka, M., Grimpe, B., Stahl, B., Eden, G. & Hartswood, M. Responsible research and innovation in the digital age. Commun. ACM 60, 62–68 (2017).
Google Scholar
Kaissis, G. et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3, 473–484 (2021).
Google Scholar
Transforming our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).